Genomics and the future direction of health research

Dr Andrew Fry
Director, Wales Gene Park
Clinical Senior Lecturer in Medical Genetics
Institute of Medical Genetics, Cardiff
fryae@cardiff.ac.uk
What are the aims of genomic health research?

• Identify the genetic causes of disease

• Predict a person’s risk of developing disease - guide prevention strategies

• Diagnose diseases more quickly

• Predict responses to different treatments - precisely tailor treatment

• Classify cancers to guide treatment choices
Bigger data – international genomic projects

- deCODE (Iceland) – 160,000+
- UK Biobank – 500,000
- All of Us Research Program (US, 2018-2023) – 1 million
- European '1+ Million Genomes' Initiative (2020-2022)
- Chinese Millionome Database (CMDB) – ? Million
- National genome projects - Australia, Canada, Dubai, Estonia, France, Hong Kong, Japan, Netherlands, Qatar, Saudi Arabia, Singapore, South Korea, Sweden, and Turkey
Major UK genomic projects

• 100,000 Genomes Project (2013-18) - 120,239 genomes from 86,618 participants (rare disease and cancer)

• UK Government ambition - 5 million genomes in the UK by 2023/24 (includes 500,000 from UK Biobank and 500,000 from NHS Genomic Medicine Service (GMS) in England.

Monogenic
e.g. cystic fibrosis

Polygenic
e.g. coronary artery disease

V = genetic risk variant
Genomic testing techniques for rare and inherited disease

Current:
• Exome sequencing (all genes – but only protein making bits) ~£700
• Whole genome sequencing (all genes and bits in between) = ~£2,000 (50x more data, ~5% more diagnoses!)

R&D stage:
• Transcriptome (RNA sequencing analysis)
• Long-read sequencing (detailed structural information)
NHS firewall

Secure research environment(s)
 e.g. SAIL, NDR, Genomics England

Digital infrastructure

CONSENT

Public/patient engagement

storage

sequencers

Researcher access
Polygenic risk scores (PRS) for common disease

- PRS = weighted count of multiple genetic markers
- Risk variants identified by large epidemiological studies (genome-wide association studies)
- PRS available for many conditions such as coronary artery disease, type 2 diabetes, and cancers
- Cheaper than sequencing for monogenic disease – use “SNP-chips”
- PRS struggle to capture full variance of traits – limits predictive power
Questions?

Dr Andrew Fry
Director, Wales Gene Park
Clinical Senior Lecturer in Medical Genetics
Institute of Medical Genetics, Cardiff
fryae@cardiff.ac.uk